Усиление фундаментов при реконструкции


Раздел 10. Реконструкция фундаментов и усиление оснований

10.1. Причины, вызывающие необходимость реконструкции фундаментов и усиление оснований.

При реконструкции предприятий, связанной с их техническим перевооружением, при капитальном ремонте зданий, прокладке подземных коммуникаций, возведении новых фундаментов около существующих сооружений, а также при развивающейся во времени недопустимой осадке возникает необходимость в оценке степени обеспечения фундаментами дальнейшей нормальной эксплуатации сооружений, а в соответствующих случаях – в усилении и переустройстве фундаментов. Основными причинами, приводящими к этому, являются: увеличение нагрузки на фундаменты, разрушение кладки фундамента или снижение его гидроизолирующих качеств, ухудшение условий устойчивости оснований и увеличение деформативности грунтов, непрерывное развитие недопустимых перемещений.

10.2. Обследование фундаментов и оснований.

Для принятия рационального решения по усилению и реконструкции фундаментов производится тщательное обследование оснований и фундаментов.

Весь комплекс работ по обследованию фундаментов и оснований разделяется на следующие этапы:

I этап – сбор и обобщение сведений по строительству и эксплуатации здания или сооружения и детальное изучение технической документации.

II этап – обследование окружающей местности и надземных конструкций здания или сооружения. Осмотр окружающей местности позволяет выяснить причину деформаций. Обследование надземных конструкций позволяет выявить характер деформаций. Обследование надземных конструкций позволяет выявить характер деформаций.

Обследования здания – внешний осмотр конструкций, выполнение необходимых замеров, отбор образцов для определения прочности, определение величины осадки деформированных зданий путём нивелирования.

III этап – обследование фундаментов и грунтов основания зданий и сооружений.

Обследование фундаментов производится из шурфов, число и размер которых определяются размерами и конфигурацией объекта, грунтовыми условиями и целями обследования.

Шурфы закладываются рядом с обследуемыми фундаментами. Если здание с подвалом, то шурфы закладывают, как правило, внутри здания с целью уменьшения объёма земляных работ. При обследовании фундаментов уточняют тип фундамента, форму, размеры в плане, глубину заложения; выявляют выполненные ранее подводки и усиления, дефекты кладки; определяют прочность тела фундамента. У свайных фундаментов замеряется диаметр или размеры поперечного сечения свай, шаг, количество свай на 1 м. длины.

Прочность материала фундаментов определяется механическими и неразрушающими способами.

Механический способ определения прочности материала фундаментов и стен подвалов основывается на измерении величины и определении характера следа, оставленного зубилом или молотком на поверхности конструкции. Прочность материала фундаментов может быть определена также с помощью шарикового молотка Физделя и эталонного молотка Кошкарова.

Более предпочтительными являются неразрушающие методы определения прочностных характеристик фундаментов. Наибольшее распространение получил акустический метод, основанный на определении времени прохождения акустического сигнала между датчиком и приёмником в испытуемом материале.

Для инженерно-геологической оценки грунтов основания назначаются разведочные скважины. В лабораторных и полевых условиях в соответствии с действующими ГОСТами определяют все физико-механические свойства грунтов.

10.3. Основные методы усиления фундаментов и оснований.

10.3.1. Методы усиления грунтов основания сводятся в основном к повышению их несущей способности путём искусственного упрочнения: силикатизации и электросиликатизации грунтов, термическим обжигом, устройством песчаных подушек под новые фундаменты.

10.3.2. Основными методами усиления фундаментов зданий и сооружений являются цементация, устройство бетонных и железобетонных обойм, укрепление фундаментов с расширением подошвы, усиление буроинъекционными сваями и призматическими сваями.

Цементация фундаментов выполняется при недостаточной прочности кладки. Для этого в теле фундамента шлямбуром или перфоратором пробивают отверстия диаметром 25 мм. и закладывают металлические трубки, через которые нагнетают цементный раствор состава 1:1 (цемент–вода) под давлением 0,3…0,5 МПа.

 
 
Укрепление фундамента бетонными и железобетонными обоймами применяется в том случае, когда цементацию произвести невозможно. Минимальная ширина бетонной обоймы должна составлять 15 см., чаще всего ее принимают равной 20…30 см. Железобетонная обойма применяется при неудовлетворительном состоянии фундаментов или стен на отдельных участках.

 
 
Укрепление фундамента с расширением подошвы осуществляют с помощью как односторонних, так и двусторонних банкет.

Подошву фундаментов уширяют в целях передачи давления на большую площадь. Если уширения делают без обжатия грунта основания, то они вступают в работу лишь при увеличении нагрузки, когда появляются дополнительные осадки. Уширенные части фундамента воспринимают только часть увеличивающейся нагрузки. Для уменьшения развития дополнительных осадок уширенного фундамента грунт под уширениями предварительно обжимают с помощью

 
 
домкратов.

Часто фундаменты усиливают путем пересадки их на сваи. Для этого либо делают буроинъекционные сваи – бурят через фундамент наклонные скважины диаметром 15…25 см, в которые под значительным давлением нагнетают бетонную смесь, либо вдавливают звенья железобетонных свай под фундамент домкратами.

10.4. Подводка новых фундаментов.

Подводку новых фундаментов производят при разработке грунта ниже подошвы существующих фундаментов, а также для прекращения недопустимых деформаций зданий и сооружений.

Свайные фундаменты усиливают в случае их недостаточной несущей способности путём задавливания свай с опиранием их на плотные грунты или наращиванием существующих свай дополнительными секциями. Чаще всего усиление свайных фундаментов производится путём погружения дополнительных свай вне контура фундамента (выносные сваи) с передачей на них нагрузки от реконструируемых фундаментов (рис. ).

Фундаменты мелкого заложения также можно пересаживать на набивные сваи.

10.5. Устройство фундаментов вблизи существующих сооружений.

10.5.1. Причины, приводящие к деформациям существующих сооружений.

Существующие здания при возведении около них фундаментов часто получают недопустимые деформации. Причин этому несколько:

1) выпор грунта в стороны котлована (рис.93, а);

2) вымывание грунта грунтовой водой из-под существующих фундаментов при открытом водоотливе из котлована (рис.93, б);

3) уплотнение несвязного грунта динамическими воздействиями при забивке шпунта, свай, раздробление шар – или клин – молотом мерзлого грунта или старых фундаментов;

4) промораживание грунта под фундаментом (рис.93, в);

5) смещение шпунта в сторону котлована (рис.93, г);

6) уплотнение грунтов под действием нагрузок, передаваемых новым сооружением на основание (рис.93, д);

7)

 
 
развитие отрицательного трения, действующего на сваи.

10.5.2. Меры по уменьшению влияния новых фундаментов на существующие.

Планировочные мероприятия направлены на то, чтобы новое здание было отнесено от существующих на безопасное расстояние – обычно на 10…20 м. Такое новое здание может рассматриваться как «отдельно стоящие» и специфических проблем с фундаментами не возникает.

Архитектурное решение может упростить задачу, если новое здание в зоне примыкания тем или иным способом облегчено, допустим, в зоне примыкания располагают блок, высота которого меньше соседнего, новое здание облегчено проездами и т.п.

Конструктивные мероприятия являются основными. Их следует разбить на три группы: 1) новое здание строится на фундаментах мелкого заложения, несмотря на то, что условие не удовлетворено ( дополнительная осадка; предельно допустимая величина дополнительной осадки); 2) новое здание возводится на свайных фундаментах; 3) под новым зданием предусмотрено строительство глубокого подземного объёма (гаража, склада и т.д.).

В случае использования фундаментов мелкого заложения рекомендуется применять следующие мероприятия: консольное примыкание, разъединительный шпунтовый ряд, превентивное усиление фундаментов соседних домов с пересадкой их на сваи усиления. Консольное примыкание частично снижает уплотнение грунта под фундаментами существующих зданий при возведении около них новых тяжёлых сооружений.

Практически полного исключения влияния загружения основания достигают разделением его шпунтом, погружаемым глубже активной зоны.

Не нашли то, что искали? Воспользуйтесь поиском:

Page 2

Расчёты фундаментов промышленных и гражданских зданий и сооружений являются достаточно сложными и трудоёмкими, поэтому их целесообразно выполнять с использованием ЭВМ. Применение ЭВМ позволяет сократить время, затрачиваемое на расчёты, избежать ошибок при расчётах, снизить стоимость и повысить качество проектных решений фундаментов; даёт возможность детально проанализировать несколько вариантов проектных решений и выбирать из них наиболее рациональный вариант. Наибольший эффект с применением ЭВМ достигается в том случае, когда инженер осуществляет выбор путей решения поставленной задачи и творческое осмысление полученных результатов.

С точки зрения реализации на ЭВМ задачи геомеханики и фундаментостроения условно можно разделить на три класса.

I класс – задачи, решение которых достигается вычислением искомых параметров, выраженных в явном виде некоторым набором формул (определение осадки фундамента метод послойного суммирования, определение размеров подошвы фундамента исходя из ограничения среднего давления под подошвой расчётным сопротивлением грунта);

II класс – задачи, которые не имеют решения в замкнутом виде (точного решения). Решение таких задач достигается так называемыми «численными методами» (задача о деформировании фундаментной плиты, лежащей на неоднородном по сжимаемости основании);

III класс – оптимизационные задачи, суть которых сводится к отысканию наилучшего варианта решения, отвечающего определённым требованиям (определение глубины заложения подошвы фундамента исходя из минимума затрат на его возведение).

Для любого типа фундамента существуют общие основные стадии методики проектирования фундаментов с применением ЭВМ. Данный процесс может быть описан следующей универсальной схемой (рис.11.1, а) – АИГУ (анализ инженерно-геологических условий строительной площадки); d – определение глубины заложения фундамента; А – определение площади подошвы фундамента; П – проверки фундаментов.

Расчёт на ЭВМ фундаментов мелкого заложения.

Основные этапы на стадии анализа инженерно-геологических условий представлены на рис.95, б, а на рис.95, в показан ряд факторов, которые следует учитывать при выборе глубины заложения фундамента. Схема определения площади подошвы фундамента и расчётного сопротивления грунта основания приведена на рис.95, г. Проверка фундамента мелкого заложения представлена на рис.95, д.

Расчёт фундаментных плит является одним из наиболее сложных и имеет ряд особенностей по сравнению с расчётами других конструкций в открытых котлованах. Это связано с различиями в площади передачи нагрузки и, как следствие, с различиями в условиях работы грунта в основании.

 
 
Расчёт выполняется в несколько этапов, на первом этапе производится подбор размеров подошвы плиты исходя из расчёта основания по деформациям (рис.96, блоки 2 – 9). На втором этапе выполняется уточнение размера плиты в плане и определение общей толщины плиты исходя из расчёта железобетонной конструкции плиты без учёта ее взаимодействия с грунтовым основанием (рис.96, блок 10). На третьем этапе производится расчёт плиты как конструкции на упругом основании, размеры которой определены расчётами на первых двух этапах, и с учётом найденных внутренних усилий выполняется подбор арматуры (рис.96, блоки 11 – 15).

Расчёты, производимые в блоках 2 – 11, с математической точки зрения не представляют особой сложности, однако являются весьма трудоёмкими. Статический расчёт фундаментной плиты на упругом основании (блок 12), особенно при сложной конфигурации плиты и сложной схеме передачи нагрузки, может практически быть выполнен только на ЭВМ.

 
 
Расчёт свайных фундаментов и их оснований должен производиться по предельным состояниям двух групп (рис.97).

По первой группе:

– по прочности конструкций свай, свайных ростверков;

– по несущей способности грунта основания свайных фундаментов и свай;

– по устойчивости;

По второй группе:

– по осадкам оснований свайных фундаментов от вертикальных нагрузок;

– по перемещениям свай совместно с грунтом оснований от действия вертикальных, горизонтальных нагрузок и моментов;

– по образованию и раскрытию трещин в элементах железобетонных конструкций свайных фундаментов.

Не нашли то, что искали? Воспользуйтесь поиском:

Page 3

9.1. Фундаменты под машины с динамическими нагрузками.

9.1.1. Типы машин.

Машины периодического действия делятся на три подгруппы: с равномерным вращением (электродвигатели, моторогенераторы, турбогенераторы, роторы и др.); с равномерным вращением и связанным с ним возвратно – поступательным движением (компрессоры, насосы, двигатели внутреннего сгорания, лесопильные рамы и др.); с возвратно поступательным движением, завершающимся непрерывно следующими один за другим ударами (встряхивающие и вибрационно-ударные машины).

Машины непериодического действия также делятся на три подгруппы: с неравномерным вращением или возвратно-поступательным движением (приводные электродвигатели прокатных станов, генераторы разрывных мощностей и др.); с возвратно-поступательным движением, завершающимся отдельными ударами (молоты ковочные и штамповочные, копровые устройства и др.); с давлением, вызывающим перемещения обрабатываемого материала и передающим на фундамент случайные нагрузки (мельничные установки).

9.1.2. Виды фундаментов под машины с динамическими нагрузками

1) массивные, бетонные или железобетонные для всех видов машин;

2) рамные, сборные или сборно-монолитные, представляющие собой ряд поперечных рам, которые опираются на нижнюю плиту или на ростверк и связаны поверху между собой продольными балками, либо верхнюю плиту, которая опирается на стойки, заделанные в нижнюю плиту, или на сваи-колонны;

3) стенчатые в виде поперечных или продольных стен, опирающихся на нижнюю плиту или на ростверк и связанных между собой поверху ригелями или плитой.

Сборно-монолитные и сборные фундаменты допускается устраивать главным образом для машин периодического действия, не допускается для машин с импульсными ударными нагрузками.

9.1.3. Расчёт оснований таких фундаментов.

По первой группе предельных состояний выполняется:

1) проверка среднего статистического давления под подошвой для фундаментов на естественном основании или несущей способности основания для свайных фундаментов; эта проверка производится для всех без исключения типов машин

где среднее давление на основание под подошвой фундамента от расчётных статических нагрузок (вес фундамента, грунта на его обрезах, машины и вспомогательного оборудования с коэффициентом перегрузки n=1); коэффициент условий работы грунтов основания, учитывающий характер динамической нагрузки и ответственность машины; коэффициент условий работы грунтов основания, учитывающий возможность возникновения длительных деформаций при действии динамических нагрузок; расчётное сопротивление грунта.

где несущая способность грунтов основания одиночной сваи; несущая способность сваи в статических условиях, определяемая в зависимости от вида сваи и грунтовых условий; и коэффициенты условий работы грунтов основания, принимаемые в зависимости от грунтовых условий;

2) расчёт прочности отдельных элементов конструкции фундамента; расчёт производится для отдельных, подвергающихся действию динамических нагрузок элементов рамных и стенчатых фундаментов (стоек и ригелей рам, балок, плит, консольных выступов), фундаментов плитного и балочного типа, а также отдельных сечений массивных фундаментов, ослабленных отверстиями и выемками (по СНиП «Бетонные и железобетонные конструкции»).

Расчёт фундаментов по второй группе предельных состояний включает:

1) определение амплитуд колебаний фундаментов или отдельных их элементов; расчёт производится в соответствии со СНиП «Фундаменты машин с динамическими нагрузками. Нормы проектирования» и является определяющим при проектировании фундаментов машин с динамическими нагрузками

где наибольшая амплитуда колебаний верхней грани фундамента, рассчитываемая для определённого типа фундамента под машины; предельно допустимая амплитуда колебаний, определяемая по СНиП 2.02.05-87;

2) определение осадок и деформаций (прогибов, крена и т.п.) фундаментов или их элементов; эти расчёты выполняются в отдельных случаях для ответственных сооружений и при наличии требований, ограничивающих перемещения и деформации фундаментов (по СНиП 2.02.01-83).

9.1.4. Расчёт на колебания.

При назначении безопасных расстояний до объектов, чувствительных к вибрациям, уровень вибраций, распространяющихся в грунте от фундаментов машин, может быть приближенно оценен по формуле:

где амплитуда вертикальных (горизонтальных) колебаний грунта на поверхности в точке, расположенной на расстоянии от оси фундамента – источника волн в грунте; амплитуда свободных или вынужденных вертикальных (горизонтальных) колебаний фундамента – источника в уровне его подошвы; ( приведённый радиус подошвы фундамента – источника, м, равный ; площадь подошвы фундамента – источника).

9.1.5. Определение упругих и демпфирующих характеристик основания для расчёта фундаментов.

Основную упругую характеристику естественных оснований фундаментов машин – коэффициент упругого равномерного сжатия , кН/м3, определяют экспериментально. Если нет испытаний, для фундаментов с площадью подошвы А не более 200 м2

где коэффициент, зависящий от вида грунта; модуль деформации грунта под подошвой фундамента; м2.

Коэффициенты упругого неравномерного сжатия , упругого равномерного сдвига , упругого неравномерного сдвига :

; ; .

Коэффициенты жёсткости для естественных оснований:

при вертикальных поступательных колебаниях фундамента (при упругом равномерном сжатии)

;

при горизонтальных поступательных колебаниях фундамента (при упругом равномерном сдвиге)

;

при вращательных колебаниях относительно горизонтальной оси, проходящей через подошву фундамента (при упругом неравномерном сжатии)

;

при вращательных колебаниях относительно вертикальной оси, проходящей через центр тяжести подошвы фундамента (при упругом неравномерном сдвиге)

;

где площадь подошвы фундамента; моменты инерции подошвы фундамента относительно горизонтальной и вертикальной осей.

Эти коэффициенты связывают напряжения и моменты действующие по подошве фундамента, с вызываемыми ими соответствующими упругими перемещениями: вертикальными , горизонтальными , поворотами и относительно главных горизонтальной и вертикальной осей инерции, проходящих через центр тяжести подошвы фундамента

По мере распространения колебаний в грунте происходит их затухание, которое принято оценивать коэффициентом относительного демпфирования. Относительное демпфирование доля критического затухания колебаний.

Коэффициенты относительного демпфирования: для установившихся (гармонических) и случайных колебаний

;

для неустановившихся (импульсных) колебаний

;

; ; ,

где к.о.д. при горизонтальных колебаниях; к.о.д. при вертикальных колебаниях; к.о.д. для вращательных колебаний относительно горизонтальной и вертикальной осей; среднее статическое давление на основание под подошвой фундамента от расчётных статических нагрузок при коэффициенте перегрузки, равном 1.

9.1.6. Расчёт фундамента на вынужденные колебания.

Вынужденные вертикальные колебания фундамента описываются дифференциальным уравнением

,

а вынужденные горизонтально-вращательные колебания фундамента – системой дифференциальных уравнений:

где масса установки (фундамента, машины, грунта на обрезах фундамента); момент инерции массы установки относительно оси вращения; коэффициенты демпфирования основания для вертикальных, горизонтальных и вращательных колебаний; коэффициенты жёсткости основания при упругом равномерном сжатии, равномерном сдвиге и неравномерном сжатии; соответственно вертикальные и горизонтальные смещения центра тяжести установки и угол поворота фундамента; расстояние от общего центра тяжести установки до подошвы фундамента; вертикальная и горизонтальная составляющие возмущающих сил и момент от возмущающих сил; угловая частота вращения машины.

9.1.7. Способы уменьшения амплитуд колебаний фундаментов.

 
 
Учитывая, что ограничение амплитуды колебаний ограничивает при данной частоте скорость и ускорение колебаний, при проектировании фундаментов стремятся в основном к уменьшению амплитуды. В связи с этим при вертикальных колебаниях стараются увеличить которое зависит от площади подошвы . При вертикальной возмущающей силе делают фундаменты с максимальной площадью подошвы и с минимальной массой. При горизонтальной возмущающей силе и моменте стремятся применять фундаменты малой высоты – распластанные.

9.2. Фундаменты в сейсмических районах.

9.2.1. Определение сейсмических нагрузок на фундаменты.

1) Основания сооружений, возводимых в районах с сейсмичностью 7,8,9 баллов должны проектироваться с учётом требований СНиП по проектированию зданий и сооружений в сейсмических районах. Если меньше 7 баллов – без учёта сейсмичности.

2) Проектирование оснований с учётом сейсмических воздействий должно выполняться на основе расчёта по несущей способности на особое сочетание нагрузок.

Предварительные размеры фундаментов допускается определять расчётом основания по деформациям на основное сочетание нагрузок (без учета сейсмического воздействия).

3) Целью расчёта несущей способности оснований при особом сочетании нагрузок является обеспечение их прочности для скальных грунтов и устойчивости для нескальных грунтов, а также недопущения сдвига фундамента по подошве и его опрокидывания. Деформации основания при особом сочетании нагрузок с учётом сейсмических воздействий расчёту не подлежат.

9.2.2. Расчёт фундаментов и оснований на сейсмические воздействия.

Расчёт оснований по несущей способности выполняется на действие вертикальной составляющей внецентренной нагрузки, передаваемой фундаментом

где вертикальная составляющая расчётной внецентренной нагрузки в особом сочетании; вертикальная составляющая силы предельного сопротивления основания при сейсмических воздействиях; сейсмический коэффициент условий работы; коэффициент надёжности по назначению сооружения.

Горизонтальная составляющая нагрузки учитывается при расчёте фундамента на сдвиг по подошве. Проверка на сдвиг по подошве производится с учётом трения подошвы фундамента о грунт, но с учётом сейсмического коэффициента условий работы

При расчёте несущей способности нескальных оснований, испытывающих сейсмические колебания, ординаты эпюры предельного давления по краям подошвы фундамента определяются по формуле:

где коэффициенты формы; коэффициенты несущей способности, зависящие от расчётного значения угла внутреннего трения; и соответственно расчётные значения удельного веса грунта, находящегося выше и ниже подошвы фундамента (с учётом взвешивающего действия подземных вод); глубина заложения фундаментов; коэффициент, принимаемый равным 0,1; 0,2; 0,4 при сейсмичности площадок строительства 7,8 и 9 баллов соответственно.

Эксцентриситеты расчётной нагрузки и эпюры предельного давления определяются по формулам

;

где вертикальная составляющая расчётной нагрузки и момент, приведённые к подошве фундамента при особом сочетании нагрузок. В зависимости от соотношения между величинами и вертикальная составляющая силы предельного сопротивления основания принимается:

при

при >

где и размеры подошвы фундамента.

На подпорные стенки и стены подвальных помещений учитывают раздельно инерционное сейсмическое давление грунта и давление, вызванное изменением напряжённого состояния среды при прохождении в ней сейсмических волн.

Активное и пассивное давление грунта на подпорные стенки с учётом сейсмического воздействия

где коэффициент сейсмичности, принимаемый равным 0,025; 0,05; 0,1 соответственно при 7,8 и 9 баллах; угол внутреннего трения грунта при расчёте по устойчивости; соответственно активное и пассивное давления грунта при статическом состоянии.

Дополнительные горизонтальные нормальные и касательные напряжения, возникающие в грунте при прохождении сейсмических волн

где удельный вес грунта; скорости распространения продольных и поперечных сейсмических волн в грунте, определяемые экспериментально; преобладающий период сейсмических колебаний (обычно принимают с).

Сейсмические нагрузки прикладываемые к подпорной стенке как инерционные

где вес элемента сооружения, отнесённый к точке ; коэффициент, учитывающий допустимые повреждения зданий и сооружений; коэффициент, учитывающий конструктивные решения зданий и сооружений; – коэффициент демпфирования; коэффициент, зависящий от расчётной сейсмичности; коэффициент, соответствующий i-му тону собственных колебаний здания или сооружения; коэффициент, зависящий от формы деформации сооружения при его собственных колебаниях по i -му тону и от расстояния нагрузки до обреза фундамента.

9.2.3. Конструктивные особенности фундаментов.

Во избежание нарушения частоты собственных колебаний однородных конструкций фундаменты отдельного сооружения или отсека здания закладывают на одну и ту же глубину.

Для исключения подвижки здания по обрезу фундаментов гидроизоляцию стен выполняют из слоя цементного раствора. Применение битумной гидроизоляции не допускается.

Целесообразно колонны каркасных зданий располагать на сплошных фундаментных плитах, перекрёстных ленточных фундаментах или соединять фундамент и свайные ростверки вставками, которые исключают подвижку фундаментов относительно друг друга.

В сборных ленточных фундаментах под стены по их обрезу устраивают армированный пояс, работающий на растяжение.

В свайных фундаментах нижние концы свай опирают на плотные грунты. Непрерывный ростверк располагают на одной и той же глубине в каждом отдельном отсеке. Подпорные стенки не рекомендуется делать большой высоты.

Неблагоприятные грунты основания: пески рыхлые насыщенные водой, слабые пылевато-глинистые грунты в текучем и текучепластичном состоянии.

Не нашли то, что искали? Воспользуйтесь поиском:

Page 4

7.1. Функциональные и конструктивные разновидности подземных сооружений.

Подземным называют сооружение (или его часть), расположенное ниже планировочной отметки грунта. Простейшими видами подземных сооружений являются подвалы жилых домов.

Наиболее распространёнными видами подземных сооружений по назначению являются: подземные гаражи, спортивные, рекреационные помещения, залы для зрелищных мероприятий и т.д.; сооружения промышленно-технологического назначения (емкости водопроводных и канализационных сетей, заглубленные части дробильно-сортировочных цехов, металлургических производств, подземные атомные котельные и т.п.); убежища ГО; пешеходные и коммуникационные тоннели; жилые дома; подпорные стены.

Достоинства подземных сооружений: сокращение потерь тепла через стены и соответствующая двух – трёхкратная экономия на отоплении, сохранение дневной поверхности грунта для других целей, повышение прибыли с единицы площади городских территорий, сокращение расходов на наружный косметический ремонт, повышение пожаробезопасности, защищённость помещений от внешних воздействий.

Ограждающей называют постоянную конструкцию, закрепляющую выработку подземного сооружения и образующую его внутреннюю поверхность. В ограждающую конструкцию входят стены, днище и верхнее перекрытие подземного сооружения. Ограждающая конструкция воспринимает нагрузки и воздействия, обеспечивает прочность, трещиностойкость, жесткость и устойчивость подземного сооружения, а также изоляцию внутреннего объёма сооружения от внешней среды с учётом требований теплоизоляции, гидроизоляции, звукоизоляции.

Проектирование подземного сооружения состоит из следующих этапов:

разработка объёмно-планировочного решения (архитектуры) в соответствии с функциональным назначением сооружения;

выбор наиболее экономичного способа строительства с учётом глубины заложения подошвы сооружения, грунтовых и гидрогеологических условий, наличия близкорасположенных строений;

решение вопроса водозащиты и гидроизоляции;

расчёт внешних нагрузок от грунта и сбор внутренних нагрузок;

расчёт и определение параметров ограждающих и внутренних конструкций;

выбор способов временного поддержания стен котлованов (при котлованном способе строительства) и расчёт параметров крепления.

7.2. Способы строительства подземных сооружений.

Данные способы делятся на две группы: способы строительства с поверхности и подземные.

Способы строительства с поверхности включают способы котлованный, опускного колодца и «стена в грунте».

Подземные способы строительства, используемые главным образом при проходке тоннелей на глубине более 10 м., излагаются в курсе «Подземные сооружения».

7.2.1. Котлованный способ.

Откапывается котлован и в нём обычными способами возводится будущее подземное сооружение. После завершения строительства котлован засыпается грунтом. При использовании этого способа обеспечиваются наиболее благоприятные условия укладки бетона, возможность устройства наружной гидроизоляции. Строительные нагрузки на ограждающие конструкции при этом способе строительства не превосходят эксплуатационные.

Недостатком котлованного способа является необходимость резервировать значительные площади поверхности за контуром возводимого сооружения при откосе стен котлована под устойчивыми углами откоса или крепления вертикальных стен. Это обстоятельство обычно ограничивает применение котлованного способа глубиной 5…7 м.

7.2.2. Способ опускного колодца. (см.6.1).

7.2.3. Способ «стена в грунте».

Сущность способа «стена в грунте» заключается в устройстве стен из монолитного или сборного железобетона в узких и глубоких траншеях. В процессе разработки грунта устойчивость стен траншей обеспечивается за счёт заполнения траншеи глинистыми растворами (суспензиями), обладающими тиксотропными свойствами. После разработки траншеи заданных размеров глинистый раствор замещается различного рода материалами, которые образуют в грунте несущие конструкции.

Достоинства способа:

1) возможность устройства подземных сооружений вблизи существующих зданий и сооружений без нарушения их устойчивости и создания дополнительных динамических нагрузок, что особенно важно при проведении реконструкции объектов;

2) исключение необходимости крепления стенок котлованов шпунтом, отказ от дорогостоящих способов водопонижения и замораживания при высоком уровне грунтовых вод;

3) сокращение трудоёмкости возведения фундаментов ограждающих конструкции и противофильтрационных завес за счёт высокой степени механизации производства работ.

Применение способа «стена в грунте» не допускается на площадках с геологически неустойчивыми условиями (карст, оползни и т.п.), в крупнообломочных грунтах с незаполненными пустотами между зернами грунта, в грунтах текучей консистенции.

Подземные стены подразделяют на траншейные и свайные из соприкасающихся и пересекающихся свай (рис. ). Траншейные стены могут сооружаться непрерывными или секциями. Траншейные и свайные стены классифицируются: по назначению – несущие и противофильтрационные; по материалу – железобетонные, бетонные, грунтоцементные, глинистые, комбинированные; по способу изготовления – монолитные, сборные, сборно-монолитные.

Ещё одним достоинством способа «стена в грунте» является то, что он позволяет устраивать стены любой сколь угодно сложной формы в плане (рис. ). Недостаток способа – необходимость ведения бетонирования под глинистым раствором, что не обеспечивает высокого качества бетона и полной водонепроницаемости.

Варианты способа «стена в грунте»:

а) откопка траншеи шириной 0,5…1,2 м. захватками длиной 3…6 м. плоским грейфером и устройство стены из монолитного железобетона путём опускания арматурных каркасов и бетонирования методом вертикальной перемещающейся трубы (ВПТ);

б) откопка траншеи тем же способом и устройство стены из опускаемых в траншею железобетонных плит заводского изготовления;

в) устройство стены в виде секущихся буронабивных свай.

Вариант «в» представляет собой наиболее щадящую технологию в отношении сохранности близстоящих сооружений. Выполняется он обычно таким образом (рис. ).

Под защитой глинистого раствора проходятся и сразу бетонируются методом ВПТ скважины 1 и 2. Через сутки – две после схватывания бетона в них проходится скважина 3, в неё опускается арматурный каркас и производится бетонирование. Далее в порядке номеров проходятся и бетонируются все скважины ряда, все нечётные при этом имеют арматурный каркас.

Рис.75. Стена в грунте из секущихся свай.

7.3. Методы расчёта подземных и заглубленных сооружений.

Расчёт подземных конструкций производят, как правило, по предельным состояниям первой группы (по устойчивости), а при необходимости – и по предельным состояниям второй группы (по деформациям).

При расчёте подземных сооружений учитываются постоянные, временные длительные, кратковременные и особые нагрузки и воздействия, возникающие в условиях строительства и эксплуатации, а для сборных элементов также нагрузки, возникающие при их изготовлении, транспортировании, складировании и монтаже. К особым нагрузкам при опускании колодцев относят дополнительное давление грунта при перекосе колодца.

Стены круглых в плане сооружений, имеющие вертикальные стыки, рассчитываются по методике расчёта опускных колодцев и оболочек; стены прямоугольных (линейных) сооружений, а также круглых, не имеющих стыков, – методом «упругой линии».

Несущая способность секций траншейных и свайных стен, используемых в качестве опор глубокого заложения, определяется как для набивных свай – столбов в соответствии с главой СНиП 2.02.03-85. Коэффициенты условий работы следует принимать и

Расчёт траншейных и свайных стен, устраиваемых способом «стена в грунте», в зависимости от конструктивной схемы сооружения производится по схеме консольной конструкции, защемлённой в грунте, или по схеме конструкции с одним или несколькими ярусами распорок или анкеров.

При наличии соответствующей программы рекомендуется сооружения, устраиваемые способом «стена в грунте», рассчитывать методом конечных элементов на ЭВМ.

7.4. Расчёт давления грунта на стенки сооружений.

7.4.1. Вертикальное давление грунта.

Если минимальный горизонтальный размер подземного сооружения b (ширина) равен или превышает толщину слоя грунта над кровлей h, то вертикальное давление на кровлю сооружения равно полному весу столба грунта над сооружением:

где – удельный вес грунта и мощность слоёв грунта над кровлей, – сплошная равномерно распределённая нагрузка на поверхности.

Если b/h0,12 – сильнонабухающие

Расчётной характеристикой основания является глубина зоны набухания .

Нижняя граница зоны набухания принимается:

а) при инфильтрации влаги – на глубине, где суммарное вертикальное напряжение равно давлению набухания ; б) при экранировании поверхности и изменении водно-теплового режима – определяется опытным путём; при отсутствии таких данных принимают м.; в) при наличии подземных вод нижняя граница зоны набухания принимается на 3 м. выше начального уровня подземных вод, но не ниже установленного по указаниям пункта «а».

8.2.2. Проектирование оснований и фундаментов на набухающих грунтах.

Расчёт оснований, сложенных набухающими грунтами выполняется в соответствии со СНиП 2.02.01-83, как для обычных грунтов. Деформации уплотнения грунтов основания от внешней нагрузки и возможная осадка от уменьшения влажности набухающего грунта должны суммироваться.

Осадка основания в результате высыхания набухающих грунтов

где – относительная линейная усадка грунта i-го слоя; – толщина i-го слоя грунта; – число слоёв в пределах зоны усадки.

Подъём основания при набухании грунта

где – относительное набухание грунта i-го слоя; – толщина i-го слоя грунта; – коэффициент, принимаемый в зависимости от суммарного вертикального напряжения равным 0,8 при =50 кПа и 0,6 – при =300 кПа, а при промежуточных значениях устанавливается по интерполяции.

Дополнительное вертикальное давление, вызванное влиянием веса неувлажнённой части массива грунта за пределами площади замачивания ,

где – коэффициент, зависящий от отношения длины замачиваемой площади к ее ширине и относительной глубины расположения середины рассматриваемого слоя; – удельный вес набухающего грунта; – расстояние от подошвы фундамента до середины рассматриваемого слоя; d – глубина заложения подошвы фундамента от отметки планировки.

8.2.3. Мероприятия по обеспечению сохранности сооружений в условиях возможного набухания грунтов.

Если расчётные деформации оснований, сложенных набухающими грунтами, оказываются больше предельных, предусматривают следующее: 1) водозащитные мероприятия; 2) предварительное замачивание набухающих грунтов в пределах всей зоны или ее части; 3) проектирование компенсирующих песчаных подушек; 4) замену набухающего грунта не набухающим полностью или частично; 5) прорезку фундаментами слоя набухающих грунтов (полную или частичную).

Для лучшей заделки свай в грунте их делают с уширением в нижней части. С целью снятия воздействия набухания грунта на рандбалку её обсыпают песком, а под рандбалкой делают воздушный зазор.

8.3. Фундаменты в условиях вечной мерзлоты.

8.3.1. Основные виды деформаций фундаментов и их причины: осадки и просадки фундаментов в результате оттаивания мёрзлых грунтов в основании; выпучивание фундаментов при замерзании и последующие их осадки после оттаивания грунтов деятельного слоя; деформации за счёт наледных явлений.

Процессы морозного пучения развиваются при промерзании грунтов деятельного слоя. При взаимодействии промерзающего грунта, подверженного морозному пучению, с фундаментом возникают направленные вверх касательные напряжения, действующие по боковым граням фундамента, а также дополнительные нормативные напряжения по подошве фундамента, если она расположена в активной зоне. Если равнодействующая направленных вверх сил пучения превысит действующую на фундамент вертикальную нагрузку и его вес, то он начнет перемещаться вверх по мере развития пучения. Неравномерный подъём фундаментов приводит к деформациям надфундаментных частей сооружений.

При оттаивании грунтов осадка фундаментов чаще всего бывает тоже неравномерная, что является причиной развития дальнейших деформаций сооружений. При этом в результате заплывания разжиженного грунта под подошву фундамента последний может опускаться не на полную величину подъёма. Отсюда следует, что деформации выпучивания могут ежегодно накапливаться.

При достаточной заделке фундамента в слой вечной мерзлоты, но недостаточной прочности его материала, под действием касательных сил пучения может произойти разрыв кладки фундамента. В стволах железобетонных свай при их недостаточном армировании могут образоваться трещины с недопустимым раскрытием, может наступить полный разрыв ненагруженных (в строительный период) свай.

8.3.2. Два принципа использования грунтов в основании сооружений.

Принцип I – вечномёрзлые грунты основания используются в мёрзлом состоянии, сохраняемом в процессе строительства и в течение всего периода эксплуатации сооружения;

Принцип II – вечномёрзлые грунты основания используются в оттаянном или оттаивающем состоянии (с их предварительным оттаиванием на расчётную глубину до начала строительства или с допущением оттаивания в период эксплуатации сооружения).

При выборе принципа анализируются данные инженерно-геологических изысканий, при необходимости производят насчёт глубины чаши протаивания и возможных при этом деформаций основания.

8.3.3. Проектирование фундаментов и оснований при сохранении мерзлоты на весь срок существования сооружения (принцип I).

Принцип I применяется в тех случая, когда расчётные деформации основания при его оттаивании превышают предельно допустимые, а улучшение строительных свойств грунтов невозможно.

Использование принципа I целесообразно, когда грунты в природных условиях находятся в твердомерзлом состоянии, имеют достаточную мощность слоя и температурный режим их устойчив. К твёрдомёрзлым грунтам, прочно сцементированным льдом, относятся песчаные и глинистые грунты, если их температура ниже: пески…– 0,3°; супеси…– 0,6°; суглинки…– 1,0°; глины…– 1,5°.

 
 
Сохранение вечномёрзлого состояния грунтов в основании сооружений обеспечивается следующими способами: возведением зданий на подсыпках (рис.84, а); теплоизоляцией поверхности грунта под полом зданий (рис.84, б); устройством вентилируемых подполий (рис.84, в); расположением в I этаже, зданий неотапливаемых помещений (рис.84, г); прокладкой под полом здания вентиляционных каналов (рис.84, д); искусственным охлаждением грунтов с помощью специальных установок (например, замораживающие колонки, рис.84, е).

Применение способов: (а) и (б) – при ширине здания до 10 м.; (в) – в жилых, общественных и промышленных зданиях устраивают свободно проветриваемое подполье, поднимая рандбалку над поверхностью земли; иногда подполье закрывают, оставляя в стенах его отверстия (продухи); трубопроводы подвешивают к перекрытию; (г) –неотапливаемые помещения выполняют роль вентилируемого подполья; (д) – в производственных зданиях с большими нагрузками на пол, а также при больших размерах этих зданий в плане; (е) – в местах выделения большого количества тепла в грунт в результате технологических процессов.

При проектировании и строительстве фундаментов по принципу I целесообразно максимально возможное заглубление их, т.к. температура в слое вечномёрзлого грунта с глубиной понижается, а также возможно оттаивание верхней части мёрзлого грунта. Рекомендуются свайные фундаменты.

8.3.4. Расчёт фундаментов по принципу I.

Расчёт по принципу I выполняют главным образом по первой группе предельных состояний, учитывая, что деформации таких грунтов несущественны.

1) При центральном нагружении.

где F – расчётная нагрузка на основание; – несущая способность (сила предельного сопротивления) основания; – коэффициент надёжности по назначению сооружения.

Несущая способность основания висячей сваи или столбчатого фундамента:

а) при слоистом залегании грунтов

где – температурный коэффициент; – коэффициент условий работы основания; R – расчётное давление на мёрзлый грунт под нижним концом сваи; А – площадь подошвы сваи; – расчётное сопротивление мёрзлого грунта сдвигу по боковой поверхности смерзания фундамента в пределах i-го слоя; – площадь поверхности смерзания i-го слоя грунта с боковой поверхностью сваи, а для столбчатого фундамента – площадь поверхности смерзания грунта с нижней ступенью фундамента; n – число выделенных при расчёте слоёв вечномёрзлого грунта.

б) для однородного грунта

Расчётные давления R и Raf устанавливаются по данным испытаний грунта или допускается принимать их по табл. СНиП 2.02.04-88 для сооружений II и III классов.

и – для свай при температуре t°=Tz ;

– для столбчатых фундаментов при t°=Tm ;

или по средней (эквивалентной) t°=Tе .

2) При внецентренном нагружении.

Несущая способность основания столбчатого фундамента определяется по СНиП 2.02.01-83. При этом эксцентриситет определяется с учётом смерзания грунта с боковой поверхностью нижней ступени фундамента.

где и – эксцентриситеты относительно осей l и b подошвы фундамента; и – моменты внешних сил от расчётных нагрузок; F – расчётная вертикальная нагрузка, включая вес фундамента и грунта на его уступах; – часть момента внешних сил, воспринимаемая касательными силами смерзания вечномёрзлого грунта с боковыми поверхностями нижней ступени фундамента высотой hp

если

Расчёт свайных фундаментов на действие горизонтальных нагрузок и изгибающих моментов производят по СНиП 2.02.03-85 «Свайные фундаменты» с учётом мерзлотно-грунтовых условий.

Расчёт фундаментов, воспринимающих значительные горизонтальные усилия, следует производить на плоский сдвиг в соответствии со СНиП 2.02.01-83 «Основания зданий и сооружений» с учётом смерзания грунта с фундаментом по его подошве и боковым граням.

8.3.5. Проектирование фундаментов и оснований при допущении оттаивания мёрзлых грунтов оснований (принцип II).

При проектировании по II принципу оттаивание грунтов в основании допускается как при эксплуатации сооружения (после возведения здания), так и перед устройством фундамента при инженерной подготовкой территории под застройку.

При оттаивании грунтов во время эксплуатации возможно возникновение дополнительных просадок.

Мероприятия, обеспечивающие нормальную эксплуатацию зданий и сооружений:

1) использование надземных конструкций малочувствительных к неравномерным осадкам;

2) регулирование процесса оттаивания:

 
 

а) фундаменты наружных стен относят внутрь здания и возводят наружные стены и колонны на консолях;

б) во время оттаивания грунт около здания обогревается.

8.3.6. Расчёт фундаментов по принципу II.

1) Расчёт по несущей способности (первая группа предельных состояний) оснований и фундаментов по принципу II производят в соответствии с требованиями расчёта устойчивости оснований из немёрзлых грунтов.

2) Расчёт свай-стоек при опирании их на скальные или другие малосжимаемые грунты при оттаивании

где F – расчётная нагрузка на сваю; – несущая способность (сила предельного сопротивления) основания одиночной сваи; – коэффициент надёжности по СНиП 2.02.03-85; – коэффициент условий работы грунта по боковой поверхности свай в пределах зоны оттаивания; – отрицательная (негативная) сила трения.

Для защемлённых свай-стоек, заделанных в скальный грунт не менее чем на 0,5 м.

для незащемлённых свай-стоек

где Rc,n – нормативное значение временного сопротивления грунта под нижним концом сваи одноосному сжатию в оттаявшем водонасыщенном состоянии; А – площадь опирания сваи на грунт; – коэффициент надёжности по грунту: для незащемлённых свай-стоек для защемлённых – ld и dr – соответственно глубина заделки сваи в скальный грунт и наибольшее поперечное сечение заделанной части сваи.

где – периметр поперечного сечения сваи; – сила отрицательного трения i-го слоя оттаивающего грунта по боковой поверхности сваи, определяемая по опытным данным (допускается определять по табл.2 СНиП 2.02.03-85); – толщина i-го слоя оттаивающего грунта.

3) Расчёт оснований по деформациям (вторая группа предельных состояний) является основным и выполняется как для оснований из талых грунтов.

где S – совместная деформация основания и сооружения при оттаивании грунтов в процессе эксплуатации сооружения под действием собственного веса грунта и дополнительной нагрузки от сооружения в пределах расчётной глубины оттаивания H; Su – предельно допустимое значение совместной деформации основания и сооружения, устанавливаемое согласно СНиП 2.02.01-83.

Различают основания:

1) с предварительно оттаянными грунтами на всю глубину заложения фундамента;

2) с предварительно оттаянными грунтами только в верхней зоне (остальная часть основания оттаивает в процессе эксплуатации);

3) грунты основания оттаивают в процессе эксплуатации сооружения.

Расчёт оснований: (1) производят как для немёрзлых грунтов; (2) по второй группе предельных состояний как основание немёрзлых грунтов и оттаявшее основание проверяют по первой группе предельных состояний на устойчивость; (3) по первой группе предельных состояний с учётом процесса оттаивания верхних слоёв и по второй группе предельных состояний, исходя из деформаций всего основания от нагрузок, передаваемых сооружением и от действия собственного веса грунта.

Осадка с просадкой частично или полностью оттаивающего основания

где Sth – составляющая осадки основания, обусловленная действием собственного веса оттаивающего грунта; Sp – составляющая осадки основания, обусловленная дополнительным давлением на грунт от веса сооружения.

где и – соответственно коэффициент оттаивания и коэффициент сжимаемости i-го слоя оттаивающего грунта, принимаемые по экспериментальным данным; – вертикальное напряжение от собственного веса грунта в середине i-го слоя, определяемое с учётом взвешивающего действия воды; – толщина i-го слоя оттаивающего грунта.

где Po – дополнительное вертикальное давление на основание под подошвой фундамента; b – ширина подошвы фундамента; kh - безразмерный коэффициент – расстояние от подошвы фундамента до нижней границы зоны оттаивания; - коэффициент сжимаемости i-го слоя грунта; – коэффициент – расстояние от подошвы фундамента до середины i-го слоя; и – коэффициенты

8.3.7. Расчёт фундаментов на воздействие сил морозного пучения грунтов.

1) Устойчивость фундаментов на действие касательных сил морозного пучения грунтов.

а) фундамент мелкого заложения;

б) свайный фундамент;

где расчётная удельная касательная сила пучения; площадь боковой поверхности смерзания фундамента в пределах расчётной глубины сезонного промерзания – оттаивания грунта; расчётная нагрузка на фундамент, принимаемая с коэффициентом 0,9 по наиболее невыгодному сочетанию; расчётное значение силы, удерживающей фундамент от выпучивания; коэффициент условий работы равный 1; коэффициент надёжности по назначению сооружения равный 1,1, а для фундаментов опор мостов – 1,3.

При использовании вечномёрзлых грунтов по принципу I

При использовании вечномёрзлых грунтов по принципу II

где периметр сечения поверхности сдвига, принимаемый равным: для свайных и столбчатых фундаментов без анкерной плиты – периметру сечения фундамента; для столбчатых фундаментов с анкерной плитой – периметру анкерной плиты; расчётное сопротивление i-го слоя вечномёрзлого грунта сдвигу по поверхности смерзания, принимаемое по табл. СНиП 2.02.04-88; толщина i-го мёрзлого или талого грунта, расположенного ниже подошвы слоя сезонного промерзания – оттаивания; расчётное сопротивление i-го слоя талого грунта сдвигу по поверхности фундамента, принимаемое в соответствии с требованием СНиП 2.02.03-85.

2) Устойчивость фундаментов на действие нормальных сил морозного пучения

где удельное нормальное давление пучения грунта на подошву фундамента, устанавливаемое по опытным данным; площадь подошвы фундамента.

8.4. Фундаменты на скальных грунтах.

Расчёт скальных оснований производится по несущей способности (первая группа предельных состояний).

где расчётная нагрузка на основание; сила предельного сопротивления основания; коэффициент условий работы, принимаемый для скальных грунтов: невыветрелых и слабовыветрелых выветрелых сильновыветрелых коэффициент надёжности по назначению сооружения, принимаемый равным 1,2; 1,15 и 1,10 соответственно для зданий и сооружений I, II, III классов.

Вертикальная составляющая силы предельного сопротивления основания, сложенного скальными грунтами независимо от глубины заложения фундаментов

где расчётное значение предела прочности на одноосное сжатие скального грунта; и соответственно ширина и длина фундамента, вычисляемые по формулам:

,

где и соответственно эксцентриситеты приложения равнодействующей нагрузок в направлении поперечной и продольной осей фундамента.

Расчёт скальных оснований по несущей способности производится из условия, чтобы среднее давление P по приведённой площади подошвы фундамента не превосходило предела прочности на одноосное сжатие скального грунта.

Приведённые размеры подошвы фундамента при внецентренном нагружении определяется из условия, что равнодействующая давлений по подошве приложена в центре тяжести площади подошвы.

Несущая способность забивной сваи, сваи – оболочки, набивной и буровой свай, опирающихся на скальный грунт, а также забивной сваи, опирающейся на малосжимаемый грунт

где коэффициент условий работы сваи в грунте, принимаемый ; площадь опирания сваи на грунт; расчётное сопротивление грунта под нижним концом сваи-стойки.

Для всех видов забивных свай, опирающихся на скальные и малосжимаемые грунты, кПа; для набивных и буровых свай и свай-оболочек заделанных в скальный грунт или равномерно опираемых на поверхность невыветрелого скального грунта R определяется по соответствующим формулам СНиП 2.02.03-85 «Свайные фундаменты».

8.5. Особенности возведения фундаментов на закарстованных территориях.

К карстовым районам относятся территории, в геологическом разрезе которых присутствуют растворимые горные породы и возможны поверхностные и подземные проявления карста. Основные типы карста: карбонатный карст (известняковый, доломитовый, меловой); сульфатный карст (часто встречается в сочетании с карбонатным).

Основные типы карстовых деформаций земной поверхности: провалы – в основном вызываются обрушением кровли карстовых полостей; оседание земной поверхности – обычно вызывается растворением пород в трещиноватых зонах или на контакте кровли карстующихся пород с другими породами; поверхностные и погребённые карстовые формы (воронки, впадины и т.д.) древнего происхождения, нередко заполненные отложениями с пониженной несущей способностью (торф, слабые грунты и т.п.).

При проектировании сооружений в карстовых районах необходимо выполнять следующие требования: предотвратить или сводить до минимума возможность катастрофических разрушений и обеспечивать достаточную безопасность для жизни людей; снижать до минимума стоимость строительства и эксплуатации с учётом возможного ущерба от карстовых явлений и расходов на специальные изыскания, противокарстовые мероприятия и ремонтно-восстановительные работы.

Требования, предъявляемые к строительству в закарстованных районах, могут быть обеспечены следующим: влиянием на естественный ход карстования путём снижения интенсивности растворения карстующихся пород или воздействия на механизм карстовых деформаций; уменьшением вредного влияния хозяйственной деятельности на ход развития карстования; защитой строительных объектов планировочным решением на территории, конструктивными мероприятиями, контролем за процессом развития карстования и за деформациями поверхности участка и возведённых сооружений.

8.6. Особенности возведения фундаментов на подрабатываемых территориях.

Основания сооружений, возводимых на подрабатываемых территориях, должны проектироваться с учётом неравномерного оседания земной поверхности, сопровождаемого горизонтальными деформациями сдвигающегося грунта в результате производства горных работ и перемещения грунта в выработанное пространство.

Фундаменты должны рассчитываться на нагрузки от воздействия горизонтальных деформаций земной поверхности (растяжения и сжатия), вызывающих горизонтальные перемещения грунта в направлении как продольной, так и поперечной осей зданий.

Для сооружений, возводимых на подрабатываемых территориях, должны применяться фундаменты следующих конструктивных схем:

жёсткой (плитные, ленточные с железобетонными поясами, столбчатые со связями – распорками между ними и т.п.);

податливой (фундаменты с горизонтальными швами скольжения между отдельными элементами, фундаменты с вертикальными элементами, имеющими возможность наклоняться при горизонтальных перемещениях грунта);

комбинированной (жёсткие фундаменты, имеющие шов скольжения ниже уровня планировки или пола подвала).

К основным мероприятиям, снижающим неблагоприятное воздействие деформаций земной поверхности на фундаменты и конструкции сооружений, относятся:

а) уменьшение поверхности фундаментов, имеющей контакт с грунтом;

б) заложение фундаментного пояса на одном уровне в пределах отсека сооружения;

в) устройство грунтовых подушек на основаниях, сложенных практически несжимаемыми грунтами;

г) размещение подвалов и технических подполий под всей площадью отсека сооружения;

д) засыпка грунтом пазух котлованов и выполнение грунтовых подушек из материалов, обладающих малым сцеплением и трением на контакте с поверхностью фундаментов;

е) отрывка перед подработкой временных компенсационных траншей по периметру сооружения.

Не нашли то, что искали? Воспользуйтесь поиском:

studopedia.ru

32. Реконструкция и усиление фундаментов. Особенности строительных работ в условиях реконструкции. Причины, вызывающие необходимость реконструкции фундаментов и усиление оснований.

Несмотря на все увеличивающийся объем реконструкции зданий и сооружений самого различного назначения, до сегодняшнего дня нет нормативных документов, определяющих порядок расчета оснований и фундаментов в различных вариантах реконструкции. К наиболее распространенным случаям реконструкции можно отнести:

  • увеличение нагрузки на существующие фундаменты (надстройки, использование более тяжелых конструкций и пр.);

  • устройство новых фундаментов на пятне застройки старого, разбираемого при реконструкции;

  • пристройку новых зданий и сооружений к старым, существующим;

  • усиление либо переустройство оснований и фундаментов.

Несущая способность должна был достаточной, чтобы не про. исходила потеря устойчивости основания, а неравномерности осадки оснований не должны превышать предельно допустимых величин для нормальной эксплуатации здания после реконструкции Проектирование производится по двум предельным состояниям.

Целью расчета по первому предельному состоянию является обеспечение несущей способности и ограничение развития чрезмерных пластических деформаций в период дальнейшей эксплуатации здания после реконструкции.

Этот расчет производится исходя из общего условия

Для пылевато-глинистых грунтов с мягко- и текучепластичной консистенцией, ленточных суглинков и глин, пылевато-глинистых грунтов, содержащих растительных остатков до 10% от веса минеральной части, а также при реконструкции сооружений со сроком эксплуатации менее 15 лет необходимо провести проверку оснований по несущей способности (по первому предельному состоянию).

Прогноз дополнительных осадок оснований реконструируемых зданий рекомендуется осуществлять специальным расчетом в 2 этана: первый этап - расчет исходной осадки (до реконструкции) с учетом напряженно-деформированного состояния (НДС) основания; второй этап - определение дополнительной осадки фундамента после реконструкции.

Способы усиления оснований и фундаментов.

В процессе длительной эксплуатации зданий и сооружений происходят деформации конструкций, вызываемые различными причинами. При строительстве зданий на слабых грунтах основными причинами деформаций являются неравномерные осадки.

Последние вызывают разрушения самих фундаментов, стен, колонн, перекрытий.

Выбор технологии усиления оснований и фундаментов зависит от рассмотренных факторов, а также от вида предполагаемых работ по консервации, реставрации либо реконструкции. Реконструкция может быть связана с увеличением нагрузок на существующие фундаменты. Основополагающими являются факторы, связанные с конструктивными особенностями здания, состоянием грунта в основании и оснащенностью организаций, осуществляющих работы. Современным оборудованием можно выполнять работы по усилению оснований и фундаментов технологично, быстро, надежно, с минимальным использованием ручных операций.

Принятое решение должно обеспечить надежную, длительную дальнейшую эксплуатацию, соответствующую данному при проектировании геотехническому прогнозу, с учетом экономики, экологии, безопасности ведения работ.

Рассмотрим и проанализируем традиционные и современные новые технологии усиления оснований и фундаментов. Предварительно оценим причины, обусловливающие необходимость усиления оснований и фундаментов. Согласно обобщенной классификации Б.И.Далматова это, прежде всего, увеличение нагрузки на фундаменты; разрушение кладки фундамента или снижение его гидроизолирующих свойств; ухудшение условий устойчивости фундаментов либо грунтов в их основании; увеличение деформативности грунтов; непрерывное развитие недопустимых перемещений конструкций.

В литературе рассматриваются, как правило, традиционные способы усиления. Однако в последние 20 лет развиваются новые технологии, особенно интенсивно в ФРГ, Англии, Франции, Италии, Швеции, Финляндии.

Традиционные способы усиления фундаментов.

Рассмотрим традиционные варианты усиления фундаментов, связанные с увеличением площади подошвы, с позиций геотехники и технологичности применительно к слабым, водонасыщенным грунтам, где такие уширения наиболее вероятны. Выполняемые уширения подошвы фундамента без предвари-тельной опрессовки малоэффективны. Они вступают в работу лишь при увеличении нагрузки, когда появляются дополнительные осадки. К сожалению, последние могут быть предельными для старого здания, требующего усиления. Это наглядно видно на схеме уширения подошвы фундамента с эпюрами давления в плоскости подошвы (рис. 15.4).

Усиление оснований и фундаментов производится, когда грунты перегружены. При вскрытии таких фундаментов (даже локальных) до уровня подошвы может произойти выпор грунта в траншею или шурф (рис.15.5).

Основные приемы усилений оснований и фундаментов сводятся к следующему. Усиливаемый фундамент разбивают на отдельные захватки (участки) длиной 1, 5...2, 0 м. На этих участках отрывают вручную траншеи шириной 1, 2...2, 0 м до подошвы. После этого в фундамент забивают металлические штыри (либо погружают в заранее пробитые отверстия через 50 см в шахмат ном порядке).

Устанавливают опалубку и бетонируют уширение. Имеются технологические приемы, позволяющие выполнить опрессовку грунта. Для этого после разработки траншеи бетонируют примыкающие к граням фундамента банкеты без омоноличивания их с кладкой существующих фундаментов. Затем в пробитые проемы устанавливают стальные балки, являющиеся упорами для гидравлических домкратов, которыми обжимают грунты в основании устраиваемых уширений. После опрессовки домкраты извлекают и бетонируют банкет (рис. 15.6, г).

Как показывают наблюдения, значительная часть нагрузки передается через подошву старого фундамента. Это можно считать допустимым, так как уширения улучшают в целом условия передачи нагрузки, исключая выпор из-под подошвы. Здесь технология работ должна исключить выпор грунта. Само появление возможного выпора должно прогнозироваться расчетом.

Рассмотренные приемы усиления сложны и дорогостоящи, а главное, выполняются преимущественно вручную. Там, где горизонт подземных вод достаточно высок, стоимость работ резко возрастает в связи с необходимостью откачки воды из траншей. Откачка должна вестись с таким условием, чтобы исключить нарушение естественного сложения грунтов в основании фундаментов реконструируемого здания. В противном случае работы по усилению только усугубят состояние здания в целом.

По ряду причин полностью неприемлем в условиях слабых грунтов рекомендуемый в литературе способ подведения новых фундаментов с увеличением глубины заложения подошвы. Такие способы нетехнологичны и могут быть реализованы лишь в достаточно прочных грунтах при низком горизонте подземных вод, где, как правило, не требуется усиления фундаментов.

Современные способы усиления фундаментов.

Чтобы исключить нежелательные для старых зданий и слабых грунтов динамические воздействия, сваи, как правило, погружают вдавливанием. Из-за стесненности существующих помещений часто используют многосекционные сваи. Технологические особенности вдавливания многосекционных свай в виде выносных опор приведены на рис. 15.8, а.

При использовании свай вдавливания необходимы надежные упоры. Несущую способность сваи можно регулировать в процессе вдавливания многосекционных элементов. Элементы могут быть изготовлены из железобетона в виде секций свай со специальными стыками, позволяющими быстро выполнять соединение. Можно использовать металлические трубы, однако при этом следует учитывать возможность их коррозии. В Петербурге эта проблема решалась двумя путями: 1 - установка арматурного каркаса и армирование всего объема трубы; 2 - использование готовых трубобетонных элементов.

Вообще сведения о коррозии самые противоречивые. По данным японских исследователей, которые широко используют металл для усиления при реконструкции, коррозия металла не зависит от состава стали, грунтовых условий, наличия сварки. При самой современной антикоррозийной защите она составляет до 0,01 мм в год. Не вдаваясь в детали этой специальной проблемы, отметим лишь, что в условиях городской застройки при блуждающих точках, обилии солей в грунтовых водах создаются самые благоприятные предпосылки для коррозии металла.

В Финляндии, Швеции, Венгрии получили распространение многосекционные сваи типа «Мега». Они были широко использованы для усиления оснований и фундаментов в Хельсинки, Стокгольме, Будапеште, Турку. В ряде случаев сваи подводили непосредственно под фундамент. Такие сваи могут быть круглого и квадратного сечения, масса элемента-до 100 кг. Сваи изготовляли из железобетонных трубчатых элементов длиной до 100 см, что позволяло легко перемещать их перекатыванием по площадке. Последовательность работ по вдавливанию свай такова (рис. 15.8, б). Нижний первый элемент с заостренным наконечником (в слабых грунтах без заострения) погружается домкратом. В качестве упора служит распределительная железобетонная балка. Наращивание сборных стыкованных элементов производится до тех пор, пока острие не достигнет плотных грунтов, что обеспечит необходимую несущую способность системы в целом.

Последним устанавливают головной элемент сваи, площадь поперечного сечения которого намного больше площади поперечного сечения сваи. После погружения сваи до проектной отметки под нагрузкой, превышающей расчетную в 1,5...1,8 раза, ее заклинивают специальными стойками. Стойки устанавливают между распределительной балкой и оголовком сваи, а полученное отверстие заполняют бетоном.

В последние 20 лет в практике усиления все шире используются буроинъекционные сваи как вертикальные, так и наклонные. После специальных работ по опрессовке такие сваи имеют неровную поверхность, поэтому за рубежом они получили название “корневидных”. Основные преимущества корневидных свай:

  • Полностью исключаются ручные земляные работы. Бурение скважин ведется непосредственно через фундамент, не затрагивая коммуникаций, проходящих около зданий и в подвалах.

  • Используя малогабаритное оборудование, можно вести работы из подвала при высоте 2, 0...2,5 м, а в случае необходимости - с первого этажа здания.

  • Совершенно не изменяется внешний вид конструкции, что немаловажно при работе на памятниках архитектуры.

  • Можно вести работы на действующих предприятиях без остановки производственного процесса.

  • Затраты ручного труда на всех технологических операциях минимальные; способ экономичен, с низким расходом материалов.

  • Очевидна экологическая чистота способа, по сравнению с химическими способами закрепления, что важно в условиях повышенных экологических требований.

Отметим отдельные недостатки указанных свай:

  • Недостаточная изученность работы тонких свай в слабых грунтах.

  • Низкая несущая способность из-за небольшого диаметра и соответственно малой боковой поверхности и площади острия.

  • Сложность надежного закрепления головы сваи в случае ветхого фундамента, который в последующем работает как ростверк. Отсутствие соответствующего расчета.

  • Неопределенность в формировании необходимого диаметра при устройстве буроинъекционных свай в слабых грунтах.

  • Неизученность работы тонкой длинной сваи как элемента, армирующего толщу слабого грунта.

Несмотря на все отмеченные недостатки, в Италии, ФРГ, Франции, Швеции и России успешно усилены здания, включая аварийно деформированные памятники, и даже возведены новые фундаменты в сложных условиях примыкания новых зданий к старым на слабых грунтах.

32

studfiles.net

Технологии усиления и ремонта фундаментов

Проблемы с фундаментом

На данный момент еще не придуманы настолько совершенные технологии возведения фундаментов, которые гарантировали бы его расчетный срок эксплуатации.

Учитывая, что с каждым днем экология становится все хуже, то даже прочные металлы и бетоны неизбежно разрушаются и этот процесс нужно или приостановить, или хоть замедлить на некоторое время. Понятно, что причин деформации фундаментов бывает множество, но стоит отметить ключевых из них:

  • Человеческий фактор. К этим факторам можно отнести ошибки в расчетах допустимых нагрузок на фундамент, неправильно подобранные технологии с учетом типа почвы, а также ошибочный выбор и монтаж строительных материалов;
  • Климатический фактор: разрушение материала фундамента за счет воздействия агрессивных грунтовых вод, кислотных и щелочных дождей;
  • Техногенный фактор. Это строительство поблизости от здания автомобильных и железнодорожных магистралей с интенсивным движением и отсутствием средств защиты от воздействия вибрации.

Фактически, ремонт и усиление любого фундамента нужно начинать делать, если:

  • Обнаружена просадка, деформация или разрушение несущей кладки, снижение его гидроизоляционных свойств или возникновение просадки только одного угла здания;
  • Обнаружено снижение устойчивости фундаментов и грунтов;
  • Увеличивается скорость деформации и разрушения грунтов под воздействием различных факторов;
  • Возникло непредвиденное и неконтролируемое перемещение элементов несущих конструкций независимо от арматурного пояса.

Основные причины деформации фундаментов, при которых реконструкция неизбежна:

  • Возникшее неравномерное уплотнение слабых грунтов, возникшее из-за изменения гидрологического режима территории или возникшей неравномерной нагрузки самих почв на подошву;
  • Нарушение структуры грунтов впоследствии неправильного осушения болотистых территорий или проведения глубинных бурильных работ;
  • Динамическое воздействие примышленных предприятий, транспортных магистралей, промышленного сейсмического влияния;
  • Понижение уровня грунтовых вод;
  • Локальное повреждение подземной части основания грунтовыми водами с агрессивными составляющими, а также нарушение внешней гидроизоляции цоколя;
  • Нарушение правил застройки поселений, когда по соседству со старыми зданиями возводятся новые с нарушениями технологического процесса;
  • Непредусмотренное типов и характеристиками основания дополнительное возведение подземных этажей и мансардных уровней. В результате на фундамент ложится более высокая нагрузка, чем расчетная;
  • Промерзание почвы выше расчетного уровня.

Понятно, что причин для деформации и повреждения основания существует множество. Но, прежде чем приступать к реставрации основания, нужно точно определиться с причиной и сначала ее устранить. А уже потом заниматься непосредственно ремонтом и усилением поврежденного фундамента, причем часто оба технологических процесса делают одновременно. Но, перед началом работ по усилению фундаментов, нужно провести тщательный, правильный и многогранный расчет технологии ремонта, чтобы затем повторно не проводить одни и те же работы.

Технологии проектирования ремонта фундаментов

Учитывая, что необходимость в усилении фундаментов возникает в следующих случаях:

  • При обнаружении опасных деформаций грунтов и искусственном или естественном износе материала оснований. В таких случаях сначала делается усиление грунта, устранение подвижек и фиксирование пластов, а уже потом нужно приступать к ремонту основания. Как правило, эта проблема особенно часто возникает в зданий старой постройки, памяток архитектуры. И проводить проектирование усиления нужно с учетом особенностей такого здания, чтобы не допустить в процессе реставрации дальнейшего разрушения несущих элементов.
  • Когда проведено необдуманное вмешательство в конструкцию возведенного дома, особенно при строительстве подвалов и мансардных этажей;
  • При строительстве на соседних участках.

Особенность фундаментов старых домов в том, что нет чертежей, а возведение проводилось самим подрядчиком. Поэтому, реставрация таких оснований довольно сложная и проектирование усиления всегда начинается из работ по обследованию наземных и цокольных конструкций, а затем способом откопки шурфов.

Обследование фундамента с использованием шурфов

Что такое шурфирование оснований? Это получение подробной информации о фундаменте путем откопки шурфов с одной или (чаще) нескольких сторон от подошвы основания. В некоторых случаях такие шурфы могут иметь глубину до 4-5 метров, что часто практиковалось древними архитекторами при возведении массивных зданий с натурального камня.

Читайте также:  Укрепление фундамента методом инъекцирования

После получения всех данных шурфования выполняются подробные чертежи, подбирается оптимальный тип строительных материалов, и отбираются образцы почвы.

Можно также получить подробную информацию о фундаменте способом бурения скважин и отбора образцов. Такой способ позволяет обнаружить и обследовать скрытые конструкции в фундаменте, например, деревянные сваи, ростверки, а также их конструкционные особенности.

Усиление фундамента лучше сразу совмещать с капитальным ремонтом здания, ведь тогда можно одновременно обработать все несущие стены и перекрытия, подобрать иной строительный материал и под его параметры выбрать способ усиления фундамента.

Строительная практика часто показывает, что при ремонте фундамента заселенного дома приходится использовать специальные пневматические домкраты и устранение пустот в несущих слоях с максимальной безопасностью для окружающих.

Как рассчитать усиление фундамента

Провести расчет качественного усиления иногда не так просто, ведь тут учитывается не только выбор технологии, но и результаты проведенных изысканий. Поэтому, главным этапом всегда становится сбор нагрузок, которые передаются на подошву основания со стороны почвы, самого здания и внешних факторов.

Классические методы ремонта и усиления фундаментов

Усиление фундаментов

Как правило, все они сводятся к увеличению полезной площади подошвы основания, благодаря чему снижается давление на почву. В таких случаях практикуется несколько методов:

  • Бурение скважин ниже глубины промерзания почвы, но не ниже нижней кромки несущей подошвы основания. Затем под него закачивается под давлением бетон, который заполняет поры грунта и подошвы, равномерно растекается по всей поверхности и там застывает.
  • Также можно провести углубление подошвы основания и заменить поврежденные и разрушенные деревянные, металлические конструкции на современные минеральные соединения. Такая технология считается оптимальной, когда будет строиться подвал или увеличивается его глубина. В таких случаях рекомендуется расширение проводить с помощью бетонных плит или натурального камня. Полученная подошва будет иметь трапециевидную форму, поэтому существенно усилит новый фундамент.
  • Установка монолитных плит под подошву. Такая технология дорогая, оправдывает себя в случае ремонта основания, поврежденного впоследствии влияния подвижек почвы от метрополитена, железнодорожных линий и промышленных комплексов. Плиты производятся из железобетона, устанавливаются в специально предусмотренные штробы на уровне нижней кромки подвального помещения. Плитные конструкции в таком случае принимают на себя нагрузку равномерно из существующим фундаментом.
  • Кирпичная или бетонная кладка в стороне от основного фундамента с целью смещения центра тяжести от поврежденного фрагмента. Практикуется в случаях наличия дома небольшой массы и если на строительной площадке есть возможность проводить земляные работы. В таких случаях по внешней стороне от поврежденного участка выкапывается траншея на глубину подошвы, устанавливается деревянная опалубка. Внутри опалубки предусматривается песчано-гравийная подушка, тщательно трамбуется и устанавливается арматурный пояс. Заполняется опалубка жидким бетоном, кирпичом или натуральным камнем, дополнительно покрывается гидроизоляционным слоем. Часто практикуется при реставрации старых оснований в сельской местности, когда нет смысла демонтировать старое здание и возводить новое.

Традиционные технологии себя оправдывают, когда ремонт или реставрация фундамента проводится на сухих и прочных почвах. Они не подходят для усиления оснований на влагонасыщенных почвах, ведь тогда приходится новые конструкции монтировать выше уровня подошвы и залегания грунтовых вод и такое усиление часто становится не эффективным.

Читайте также:  Появление трещин основания и способы их устранения

В процессе реконструкции здания существенно увеличиваются нагрузки на основание, поэтому и нужно проводить реконструкцию и усиление одновременно. В таких случаях практикуют использование бетонных или железобетонных обойм.

Процесс усиление старого фундамента

Технология простая, но трудоемкая:

  1. Проводится расчет типа обойм, их размера и материала наполнения.
  2. Затем в четко указанных местах непосредственно в фундаменте бурятся скважины (шпуры).
  3. В готовые отверстия устанавливают арматуру, обвязывают ее с арматурой старого основания с целью увеличить полезную площадь перекрытия подошвы.
  4. Также в шпуры монтируют поясную вертикальную арматуру, которая защищает конструкцию от смещения.
  5. Готовые элементы заливают бетоном под давлением.

Если обойма делается в фундаменте с бутового камня, тогда сначала нужно вырыть траншею и отверстия делать аккуратно перфоратором или ударной дрелью. В отверстия устанавливают стяжки, затем конструкция заливается бетоном. За счет неровной поверхности кладки, сцепление бетона и бутового камня будет максимальным.

Технология подведения свай

Замена нижних венцов при ремонте фундамента деревянного дома

Такая технология предусматривает ремонт фундамента за счет переноса части или всей массы здания на новый фундамент, возведенный под основной подушкой. Фактически, это пересадка старого основания на новые железобетонные сваи, а грунт закрепляется с помощью инъекции строительного раствора.

Но такая технология себя оправдывает, если под основанием обнаружен прочный слой почвы на относительно небольшой глубине. В иных случаях нужно использовать другие методы усиления фундамента здания.

Тут также нужно помнить, что сваи для усиления конструкций отличаются от обычных свай, на которых возводятся дома. Тут используются специальные буронабивные и инъекционные сваи, а также сваи вдавливания.

Особенность технологии  в том, что нужно использовать малогабаритную технику, а если есть доступ до строительной площадки, то и вид ремонта можно подобрать.

Как использовать буронабивные сваи

Этапы работ по усилению ленточных фундаментов набивными сваями

Как правило, в условиях заселенного города часто ограничен доступ до строительной площадки. Поэтому, если есть достаточно места для подвода тяжелой техники, тогда стоит использовать буронабивные сваи, ведь они устанавливаются на расстоянии не менее 2.5 метра от стены.

Но при установке свай часто возникает сильная вибрация грунта, а это может привести к дальнейшему разрушению основания. Также стоит помнить, что поперечные балки громоздкие и требуют расхода большого количества металла.

Технология установки свай:

  1. Сначала проводится подготовка строительной площадки, она тщательно выравнивается.
  2. Затем монтируются и открываются шурфы, в которые подводят и вдавливают металлические трубы, которые между собой сваривают арматурой.
  3. Трубы заливают бетоном.

Преимущество технологии очевидно, ведь можно трубы установить на глубину до 25 метров, а на месте определяется их несущая способность, а реконструкция основания будет проведена за считанные недели.

Использование инъекционного усиления

Инъекционное закрепление фундамента

Ключевое отличие инъекционной технологии от буронабивной – это использование бетона, подаваемого под большим давлением. Когда бетон попадает на нижнюю часть сваи, он выдавливает грунт и заполняет полученную полость. В результате происходит надежное уплотнение грунта под основанием с одновременным формированием новой подушки.

Вариантов бурения существует большое количество, тип и способ подбирается исходя от ситуации на строительной площадке, а также типа фундамента. Все сваи имеют наклонную конструкцию, пробивают фундамент и углубляются до уровня прочного грунта. Также допускается бурение с двух сторон с небольшим интервалом.

Инъекционное закрепление оправдано при ремонте зданий, возведенных на песчаных грунтах. Ведь в таких случаях происходит локальное насыщение грунта строительными растворами, которые улучшают механические характеристики почвы.

fundamentclub.ru

Методы реконструкции и усиления оснований и фундаментов

Повышение несущей способности оснований и фундаментов при реконструкции может быть обеспечено за счет:

усиления и изменения конструкции или размера фундамента;

  • закрепления грунтов основания инъктированием;

  • механического уплотнения;

  • армирования.

Укрепление и усиление фундаментов проводят в следующих случаях:

  • при снижении прочности материала фундамента в результате его разрушения, физического и химического выветривания или износа;

  • при реконструкции здания, вызывающей увеличение нагрузок или появление дополнительных воздействий, например, вибрации от оборудования;

  • при новом строительстве рядом расположенного здания, подземного сооружения, прокладке коммуникаций и т.д.

  • при появлении деформаций в конструкциях, общем крене здания.

2.3. Используют следующие методы усиления фундаментов:

  • укрепление тела фундамента путем инъекций, которое применяется при небольших разрушениях материала фундамента и незначительном повышении нагрузок на фундаменты;

  • устройство обойм без уширения или с уширением подошвы фундамента;

  • подведение конструктивных элементов под существующие фундаменты - плит, столбов, стен, осуществляемое при необходимости повышения несущей способности основания или углубления фундаментов;

  • подведение новых фундаментов с использованием, главным образом, свай различный видов - вдавливаемых, буронабивных, буроинъекционных, бурозавинчивающихся и др., которое осуществляется при значительном увеличении нагрузок и значительной глубине залегания несущего слоя грунта;

  • переустройство столбчатых фундаментов в ленточные и ленточных в плитные;

  • устройство щелевых (шлицевых) фундаментов.

Укрепление оснований зданий и подземных сооружений производится в следующих случаях:

  • при ослаблении оснований в период их эксплуатации, в результате чего происходят значительные общие и неравномерные осадки, а также крены зданий;

  • при реконструкции зданий и подземных сооружений, когда происходит увеличение нагрузок и (или) перераспределение их между несущими конструкциями.

Инъекционное закрепление грунтов различными растворами применяют для:

  • усиления оснований при углублении фундаментов;

  • устройства плиты под зданием из закрепленного грунта;

  • цементации зоны контакта подошвы фундамента с грунтом;

  • устройства противофильтрационных завес и пристенной наружной гидроизоляции подземных конструкций.

Примеры решений по усилению фундаментов:

Рис. 1. Усиление фундамента под наружную стену с использованием ж\б вставок и защита стены фундамента обмазочной гидроизоляцией.

Рис. 2. Усиление фундамента под внутреннюю стену с использованием ж\б вставок и защита стены фундамента обмазочной гидроизоляцией.

Рис. 3. Усиление фундамента под наружную стену с омоноличиванием уступа.

Рис. 4. Усиление фундамента под внутреннюю стену с омоноличиванием уступа.

Рис. 5.Фрагмент плана усиления фундамента с омоноличиванием уступа.

Рис. 6. Усиление фундамента под наружную стену с устройством сплошной ж/б обоймы.

Рис. 7. Усиление фундамента под наружную стену с устройством столбов и установки ст. балок.

Рис. 7. Усиление фундамента под стену с устройством ростверков, установки ст. балок и буронабивных свай. 1 – стальная прокатная балка; 2 – ж/б ростверк; 3 – буронабивные сваи.

Рис. 7. Усиление основания под подошву фундамента с нагнетанием составов усиления. 1 – полость нагнетания составов усиления; 2 – трубопровод; 3 –компрессорная установка.

Профессор Безбородов Л.В.

Ст. преп. Безбородов Е.Л.

ЛЕКЦИЯ 6.

Л. 6.Стены гражданских зданий, колонны и другие вертикальные несущие элементы. Методы усиления и капитального ремонта.

В процессе длительной эксплуатации, а также в результате внешних воздействий (силовых и не силовых) в стенах, колоннах и других вертикальных несущих элементах возникают трещины.

Повреждения в конструкции разделяются в зависимости от причин их возникновения на две группы: от силовых воздействий и от воздействия внешней среды. Последняя группа повреждений снижает не только прочность конструкции, но и уменьшает ее долговечность

В зависимости от имеющейся поврежденности и надежности, техническое состояние конструкций разделяется на 5 категорий: нормальное, удовлетворительное, не совсем удовлетворительное, неудовлетворительное, аварийное.

Влияние повреждений на надежность конструкций оценивается посредством уменьшения общего нормируемого коэффициента надежности (запаса) go=gm·gc·gf·gnконструкций в процессе эксплуатации, гдеgm- коэффициент надежности по материалу,gc- коэффициент условий работы,gf- коэффициент надежности по нагрузке,gn- коэффициент надежности по назначению.

Относительная надежность конструкции при эксплуатации J=g/goи поврежденность конструкцииe= 1 -J, гдеg- фактический коэффициент надежности конструкции с учетом имеющихся повреждений.

Значения Jиe, а также приближенная стоимостьСремонта по восстановлению первоначального качества в процентах по отношению к первоначальной стоимости для различных категорий технического состояния конструкций приведены в табл.1.

Оценка технического состояния стальных, железобетонных, каменных и деревянных конструкций, на основе имеющихся в них повреждений, приведена в таблицах 2-5. При этом оценка надежности конструкций должна проводиться по максимальному повреждению на длине конструкции. Для оценки категории состояния конструкции необходимо наличие хотя бы одного признака, приведенного в графах 2, 3 таблиц.

Таблица1

Категории технического состояния

Категория технического состояния

Описание технического состояния

J = g/go

e = 1 - J

С, %

1

2

3

4

5

1

Нормальное состояние. Отсутствуют видимые повреждения, свидетельствующие о снижении несущей способности. Необходимости в ремонтных работах нет.

1

0

0

2

Удовлетворительное состояние. Незначительное снижение несущей способности и долговечности конструкций. Требуется устройство антикоррозионного покрытия, затирка трещин и т.п.

0,95

0,05

0 - 11

3

Не совсем удовлетворительное состояние. Существующие повреждения свидетельствуют о снижении несущей способности конструкции. Требуется текущий ремонт.

0,85

0,15

12 - 36

4

Неудовлетворительное состояние. Существующие повреждения свидетельствуют о непригодности к эксплуатации конструкции. Требуется капитальный ремонт с усилением конструкций. До проведения усиления необходимо ограничение нагрузок.

0,75

0,25

37 - 90

5

Аварийное состояние. Требуется немедленная разгрузка конструкции и устройство временных креплений, замена аварийных конструкций.

0,65

0,35

91 - 120

Таблица2

Оценка состояния стальных конструкций по внешним признакам

Категория состояния конструкции

Признаки силовых воздействий на конструкцию

Признаки воздействия внешней среды на конструкцию

1

2

3

1

Нет

Нет

2

Нет

Местами разрушено антикоррозионное покрытие. На отдельных участках коррозия отдельными пятнами с поражением до 5 % сечения. Местные погнутости от ударов транспортных средств и другие повреждения, приводящие к ослаблению сечения до 5 %

3

Прогибы изгибаемых элементов превышают 1/150 пролета

Пластинчатая ржавчина с уменьшением площади сечения несущих элементов до 15 %. Местные погнутости от ударов транспортных средств и другие механические повреждения, приводящие к ослаблению сечения до 15 %. Погнутость узловых фасонок ферм.

4

Прогибы изгибаемых элементов более 1/75 пролета. Потеря местной устойчивости конструкций (выпучивание стенок и поясов балок и колонн). Срез отельных болтов или заклепок в многоболтовых соединениях.

Коррозия с уменьшением расчетного сечения несущих элементов до 25 %. Трещины в сварных швах или в околошовной зоне. Механические повреждения, приводящие к ослаблению сечения до 25 %. Отклонения ферм от вертикальной плоскости более 15 мм. Расстройство узловых соединений от проворачивания болтов или заклепок.

5

Прогибы изгибаемых элементов более 1/50 пролета. Потеря общей устойчивости балок или сжатых элементов. Разрыв отдельных растянутых элементов ферм. Наличие трещин в основном материале элементов.

Коррозия с уменьшением расчетного сечения и несущих элементов более 25 %.

Расстройство стыков со взаимным смещением опор.

Таблица3

Оценка состояния железобетонных конструкций по внешним признакам

Категория состояния конструкции

Признаки силовых воздействий на конструкцию

Признаки воздействия внешней среды на конструкцию

1

2

3

1

Волосяные трещины (до 0,1 мм)

Имеются отдельные раковины, выбоины.

2

Трещины в растянутой зоне бетона не превышают 0,3 мм

На отдельных участках с малой величиной защитного слоя проступают следы коррозии распределительной арматуры или хомутов. Шелушение ребер конструкций. На поверхности бетона мокрые или масляные пятна

3

Трещины в растянутой зоне бетона до 0,5 мм.

Продольные трещины в бетоне вдоль арматурных стержней от коррозии арматуры. Коррозия арматуры до 10 % площади стержней. Бетон в растянутой зоне на глубине защитного слоя между стержнями арматуры легко крошится. Снижение прочности бетона до 20 %.

4

Ширина раскрытия нормальных трещин в балках не более 1 мм и протяженность трещин более 3/4 высоты балки. Сквозные нормальные трещины в колоннах не более 0,5 мм.

Прогибы изгибаемых элементов более 1/75 пролета.

Отслоение защитного слоя бетона и оголение арматуры. Коррозия арматуры до 15 %. Снижение прочности бетона до 30 %.

5

Ширина раскрытия нормальных трещин в балках более 1 мм при протяженности трещин более 3/4 их высоты. Косые трещины, пересекающие опорную зону и зону анкеровки растянутой арматуры балок. Сквозные наклонные трещины в сжатых элементах. Хлопающие трещины в конструкциях, испытывающих знакопеременные воздействия. Выпучивание арматуры в сжатой зоне колонн и балок. Разрыв отдельных стержней рабочей арматуры в растянутой зоне, разрыв хомутов в зоне наклонной трещины. Раздробление бетона в сжатой зоне. Прогибы изгибаемых элементов более 1/50 пролета при наличии трещин в растянутой зоне более 0,5 мм.

Оголение всего диаметра арматуры. Коррозия арматуры более 15 % сечения. Снижение прочности бетона более 30 %. Расстройство стыков.

Таблица4

Оценка состояния каменных конструкций по внешним признакам

Категория состояния конструкции

Признаки силовых воздействий на конструкцию

Признаки воздействия внешней среды на конструкцию

1

2

3

1

Трещины в отдельных кирпичах, не пересекающие растворные швы.

2

Волосные трещины, пересекающие не более двух рядов кладки (длиной 15 - 18 см).

3

Волосные трещины, при пересечении не более четырех рядов кладки при числе трещин не более четырех на 1 м ширины (толщины) стены, столба или простенка.

Вертикальные и косые трещины (независимо от величины раскрытия), пересекающие не более двух рядов кладки.

Размораживание и выветривание кладки, отслоение облицовки на глубину до 15 % толщин.

4

Вертикальные и косые трещины в несущих стенах на высоту не более четырех рядов кладки. Образование вертикальных трещин между продольными и поперечными стенами, разрывы или выдергивания отдельных стальных связей и анкеров крепления стен к колоннам и перекрытиям. Местное (краевое) повреждение кладки на глубину до 2 см под опорами ферм, балок и перемычек в виде трещин и лещадок; вертикальные трещины по концам опор, пересекающие не более двух рядов кладки.

Размораживание и выветривание кладки, отслоение облицовки за глубину до 25 % толщины. Наклоны и выпучивание стен и фундаментов в пределах этажа не более чем на 1/6 их толщины. Смещение плит перекрытий на опорах не более 1/5 глубины заделки, но не более 2 см.

5

Вертикальные и косые трещины в несущих стенах и столбах на высоту более четырех рядов кладки. Отрыв продольных стен от поперечных в местах их пересечения, разрывы или выдергивания стальных связей и анкеров, крепящих стены к колоннам и перекрытиям. Повреждение кладки под опорами ферм, балок и перемычек в виде трещин, раздробления камня или смещения рядов кладки по горизонтальным швам на глубину более 2 см; образование вертикальных или косых трещин, пересекающих более двух рядов кладки.

Размораживание и выветривание кладки на глубину до 40 % толщины. Наклоны и выпучивание стен в пределах этажа на 1/3 их толщины и более смещение (сдвиг) стен, столбов и фундаментов по горизонтальным швам.

Смещение плит перекрытий на опорах более 1/5 глубины заделки в стене.

Таблица5

Оценка состояния деревянных конструкций по внешним признакам

Категория состояния конструкции

Признаки силовых воздействий на конструкцию

Признаки воздействия внешней среды на конструкцию

1

2

3

1

Волосные усадочные трещины в конструкциях.

2

Ослабление креплений отдельных болтов, хомутов, скоб.

Большие щели между досками наката и балками перекрытия.

3

Продольные трещины в конструкциях. Сдвиги и отслоения в швах и в узлах конструкций заметные на глаз и частичные зазоры в сплоченных дощатых пакетах, между отдельными рабочими сдвигающимися поверхностями более 2 мм. Прогибы изгибаемых элементов превышают предельные значения СНиП II-26-76.

Следы протечек, мокрые пятна в конструкциях. Гниль в мауэрлате и в концах стропильных ног, снижающая прочность до 15 %.

4

Глубокие трещины в элементах. Трещины, в работающих на скалывание торцах по ширине более 25 % от толщины элемента.

Сильное обмятие и зазоры более 3 мм в рабочих поверхностях врубок. Смятие древесины вдоль волокон по линии болтов и нагелей на 1/2 их диаметра.

Потеря местной устойчивости элементов конструкций.

Прогибы изгибаемых элементов более 1/75 пролета.

Гниль в местах заделки балок в наружные стены. Гниль в мауэрлате, стропилах, обрешетке, накате, снижающая прочность до 25 %.

5

Прогибы изгибаемых элементов более 1/50 пролета. Быстроразвивающиеся деформации. Сквозные трещины в накладках стыков по линии болтов ферм.

Надломы и разрушения отдельных конструкций.

Скалывание врубок.

Потеря устойчивости конструкций (поясов ферм, арок, колонн).

Поражение гнилью и жучком строительных конструкций, приводящих к снижению их прочности более 25 %.

Примечание. Оценка повреждений стальных элементов металло-деревянных конструкций производится по табл.2.

Основные методы усиления конструкций

-

Рис. 1. Усиление простенков стальной обоймой: 1- кирпичный простенок; 2 – вертикальный уголок обоймы; 3 – планка из полосового металла.

Рис. 2. Сечение простенка: 1- кирпичный простенок; 2 – вертикальный уголок обоймы; 3 – планка из полосового металла.

Рис. 3. Усиление колонны (столба) стальной обоймой: 1- балка; 2 – вертикальный уголок обоймы; 3 – планка из полосового металла; 4 – обрез фундамента.

Рис. 3. Опорный узел колонны (столба)при усилении стальной обоймой: 1- опорный уголок; 2 – вертикальный уголок обоймы; 3 – планка из полосового металла; 4 – обрез фундамента; 5 – опорная стальная пластина

Профессор Шарапенко В.Г.

Ассист. Чабар М.

Лекция 9.

Устройство дополнительных входных узлов при перепрофилировании помещений нижних этажей (жилые, нежилые помещения).

При реконструкции зданий производится тщательный анализ возможного сохранения или разборки имеющихся пристроек, которые в большинстве случаев усложняют конфигурацию плана здания (сооружения).

В большинстве случаев наиболее экономичное и удобное решение может быть достигнуто именно за счет упрощения очертаний плана. Следует стремиться к улучшению планировочной структуры перепрофилированного здания, наиболее полно отвечающей его новому назначению; по возможности надо избегать темных помещений случайного назначения, следует улучшать естественное освещение основного корпуса.

Одним из важнейших планировочных узлов в здании является комплекс входных помещений – входной узел. При реконструкции возникают различные варианты: реконструкция жилого здания с перепрофилированием назначения первого этажа, реконструкция здания общественного назначения. В первом случае целесообразность перепрофилирования жилых помещений 1 этажа диктуется существенным снижением потребительской ценности жилья, размещаемого на 1 этаже, недостаточной инсоляцией, отсутствием летних помещений (балконов, лоджий).

Лифты и мусоропроводы устраиваются в зданиях высотой более 5 этажей или в случаях, когда уровень пола последнего этажа превышает 13,5м расстояния до площадки перед входом в здание. Лифты устанавливают в соседних с лестницами помещениях квартир в глухих шахтах из кирпича или железобетона. Лифты размещают также в специальных пристройках либо снаружи здания (каркасно-подвесные лифты). При широких пролетах между лестничными маршами лифты располагают в шахтах, огражденных металлическими сетками. В пристраиваемых объемах целесообразно устройство лифтов, а также мусопроводов с мусорокамерой размером в плане 2х3м (на 1 этаже с организацией удобного подхода к ней). Такое решение целесообразно при ориентации на дворовой фасад.

При размещении на первых этажах помещений общественного назначения необходимо четкое разграничение входов в здание, ведущих на жилые этажи и

входов в нежилую часть (1 этаж). При этом входы в жилую часть следует устраивать со стороны двора, а входы в нежилую часть – со стороны улицы, с организацией удобных подходов и подъездов, автостоянки (дневной).

При входе в общественное здание (помещение) должен быть предусмотрен вестибюль. Пространство вестибюля может быть организовано демонтажем ряда перегородок (ненесущих!), имеющихся в бывших квартирах. Небольшие помещения могут быть основаны при входе (или вновь образованы) для размещения служб охраны. Площадь вестибюля принимается не менее 18м2.

Доцент Туснина В.М.

Лекция 10.

studfiles.net


Смотрите также